Pre-Fire Planning/Work											
Effectiveness of fuel treatments											
Simple models for practitioners to use during PRE FIRE	Short-Term Response										
assessments that look at vulnerabilities (most are very	Short-Ierm_Response										
challenging for practitioners)	Precipitation										
A complete comparison of modelling accuracy from pre to	Hydrology Sharima Information										
post fire impacts.											
Pre-fire assessments that can provide potential risk ahead of		Recovery Monitoring Pre-Fire Planning									
time.	r										
If there are preemitive mitigation efforts that can be out											
into place to lessen post fire impacts.											
More work expanding on simulating burn severity for use in	Values_at_RiskBulkingTechnology Community_Engagement Community Action										
pre-fire assessments											
Easy mitigations for private property											
Simple post fire risk mapping for use before fires		F	Region_S	Specific	Researc	h					
Pre fire impact assessment	Climate Change										
+1 to comment on pre fire engagement											
Pre-fire risk assessments using publicly available geodata											
and GIS tools.											
Pre-fire analysis, including proactive management of											
invasive species, and analysis of the efficacy of that											
management in light of fire/post-fire information.											
Pre-fire planning and prep for post-fire response											
cost savings/economic benefits of fuels treatment											
How do these events occur and/or repeat over longer time											
periods.											
Fire Monitoring Handbook FMH update/revision											
Identification of high risk areas											
Modeling											
Fuel models											
Modeling post fire response in more humid climates											
Additional research on reburn effects on soil properties and											
water quality/availability.											

May 20, 2020

Relationship between fire intensity and post-fire DF				
susceptibility.				
Model refinements for geographic areas				
Short-Term Response				
Rapid risk assessment procedures that can be implemented				
by broader disciplines				
Updates to effectiveness of post fire treatments				
impacts of heavy equipment usage in post-fire zones - both				
for harvesting, debris removal, and				
restoration/reforestation activities				
What can firefighters do/avoid doing while they're out there				
there on the fire and just after?				
Region specific research				
Hawaii and Pacific-specific post fire science.				
Regional climate influence such as NA monsoon				
Climate-adapted reforestation				
Infiltration				
Post fire ground cover and infiltration database				
More refined infiltration adjustment guidance for post-fire				
conditions.				
Technology				
AI methods to harvest information (i.e. human-readable text				
that is not necessarily immediately "understandable" by				
machines) and to integrate that information for fire science				
research				
How to balance High Tech with High Touch?				
Bulking/Debris Flows/Erosion				
Bulking rates and model				
Sediment bulking				
Sediment bulking and routing				
Bulking of flood flows				
Importance of soil disagreggation depth on debris flow				
initiation				
Bulking factors for runoff				

	Bulking rates				
	Mapping of pre fire tendancy toward debris flow				
	In-channel erosion-transport-deposition processes				
	incorporated in erosion models				
	Bulking				
	Bulking factor criteria				
	Debris and sediment flow rates and impacts on downstream				
	coastal areas and waters				
	Regional variations in post fire debris flow initiation.				
	Mapping for Pre-Fire debris flow levels so you have a				
	benchmark.				
	flash flood thresholds in combination with debris flow				
	thresholds				
	Wind erosion effect on vegetation recovery and health				
	impact on air and water				
Soil					
	soil functional and productivity recovery				
	Research on soil effects from reburn.				
	Studying pre-fire dry soil repellency compared to post-fire				
	repellency, therefore a better understanding of how the soil				
	conditions changed.				
	How microbial recovery impacts soil and vegetation				
	recovery				
Sharing li	nformation				
	How to collect information that can be fed upward?				
	Turn research into a product for BAER Teams				
	Potential integration of postfire science with JFSP Fire				
	Science Exchange Network				
	Practitioner information sharing				
	increased open source easy models for lower level				
	technician types not every district has "academics"				
	Better science delivery to the practioners				

More meaningful engagement with practitioners throug	hout			
the research process - not just as stakeholders but as				
meaningful partners				
How can we set up a reporting system for event and no	1-			
events? Something similar to the CMOR citizen drought				
impact reporting.				
Trainings or user friendly models to predict erosion rate	5			
and downslope sedimentation vulnerabilities in steep				
coastal slopes				
Interpreting the input and output accuracies in the resu	ts			
Getting the observation data (gauge,radar,stream) to th	e			
NWS into the AWIPS warning computer system.				
Scalability of projects, upland treatment effectiveness in				
different ecotypes, and how to collaborate better in suc	na			
tough hierarchical structure with few voices				
Does text onboarding help with dissemination?				
Normalized schema for aggregate modeling.				
Catalogue of storm events that trigger a debris flow events	nt			
inventory of storms of record for Forests, inventory of				
damaging storm that trigger post-fire events				
Community Engagement				
Engaging citizen scientists				
Outreach education for the public				
Communication tools				
Messaging content and dissemination				
More messaging/communication studies with practical	ise			
Communication with local long term recovery groups.				
How to better utilize local agencies and organizations Ir	post			
fire planning, burn assessment, and implementation.				
Community Action				
political / social science around changing local regulatio	ns /			
zoning to get people out of the high risk areas				

	Supporting locals after the BAER teams leave. Tools to help				
	managers make calls post fire, second year, third year, etc.				
	most are guessing at best this leads to many not leaving				
	their homes after multiple calls to evacuate				
	Development in high- and medium-risk zones (social science				
	and geography?)				
	Impacts/consequences to human and other bio systems.				
	How can those systems affect the science (e.g.,				
	development that does/not plan for wildfire and Post-fire				
	vulnerabilities)				
	+1 to supporting locals after Baer leaves				
	USACE involvement in BAER team deployments.				
	I'd like to see researchers on the BAER Teams often to				
	see/help the rapid assessment process				
Values at	Risk				
	Values at risk decision support tools				
	Monetizing values at risk				
	Effects to cultural resources, particularly different types				
Climate o	hange				
	climate change and how post fire response may differ in				
	places where there have not historically been many fires (ie.				
	Alaska and the western PNW)				
	changes in vegetation type w/ changes in climate				
	Better forecast modeling in light of climate change and				
	modified likelihood of debris-flow initiating precipitation				
	events				
Hydrolog	y/Precip				
	RAINFALL THRESHOLDS				
	Density of rain and stream gages is very low in many				
	Forests.				
	Rainfall thresholds and identifying recovery differences				
	across California				
	Thresholds				
	Post fire flood flow estimation improvement				

	Improving post fire hydrology prediction				
	Changes in hydrology - streamflows that are not necessarily				
	going to be a flash flood/debris flow issue, but may affect				
	runoff characteristics that could still impact river flooding				
	and modeling.				
	2nd + year precip thresholds				
	Use of lightening strike data to map probability of summer				
	thunderstorms				
Recovery	/ Monitoring				
	Riparian area protections and recovery				
	guidance on evaluating recovery in the field				
	More on effectiveness of practices in reducing flood/DF and				
	in speeding recovery of ecosystem services				
	How does drought impact recovery				
	Post-fire ecosystem recovery				
	Mapping post fire recovery across broad areas				
	How best to monitor invasive and noxious weed infestations				
	post-fire and how different species respond to different fire				
	conditions in different parts of the country.				
	Effectiveness of post fire erosion mitigation measures				
	Types of monitoring methods in post-fire recovery				
	environments.				
	Native seeding.				
	Native seeding				
	Seeding with fast growing non native sterile species.				
	What protection structures work best to protect the alluvial				
	fan.				
	Effectiveness of inexpensive treatments at stream crossings				
	Cost/ benefit comparisons of suppression vs. rehabilitation.				
	How climate and invasive spp affect post fire effects and				
	vegetation recovery				

What other aspects of post-fire science would you like to see researchers address?

Separating rapid risk assessment from longer term modeling	5			
and design				
Interaction of post fire landscapes and insect and disease				
susceptibility and spread in the lo big term, and how that				
intersects with recovery				
Better burn severity data developed by fire ecologists				